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Ketamine exhibits anti-gastric cancer activity via 
induction of apoptosis and attenuation of PI3K/Akt/mTOR

Shiling Zhao1, Lin Shao1, Yingwei Wang1, Qingtao Meng2, Jinning Yu3

A b s t r a c t

Introduction: Gastric cancer (GC) is the most widespread type of cancer 
after lung and liver cancer in men and after breast cancer in women. Thus, 
the present study was intended to evaluate the effect of ketamine (KET) on 
gastric cancer cells. 
Material and methods: The effect of KET was analyzed in vitro by the MTT 
assay against human gastric cancer cell lines BGC-823, MKN-45 and MKN-28.  
The effect KET on apoptosis, cell migration and cell cycle arrest was also 
quantified. Western blot analysis was performed to estimate the effect 
of KET on apoptosis mediators and PI3K/AKT/mTOR pathway mediators. 
A mouse xenograft assay was also conducted to further confirm the anti-
cancer activity.
Results: KET causes reduction of cellular viability of BGC-823, MKN-45 and 
MKN-28, with a more significant effect against BGC-823 cells. The KET treat-
ment showed a dose-dependent increase in apoptotic cells among BGC-823 
cells. KET causes a significant dose-dependent decline in migration of treat-
ed cells. It causes induction of apoptosis mediated via the mitochondrial 
pathway, where it causes a decline in Bcl2 and mitochondrial cytochrome c 
level together with increase in expression of Bax, cytosolic cytochrome c and 
cytosolic apoptotic protease activating factor-1 (Apaf-1). The level of p-PI3K, 
p-mTOR, p-GSK3β and p-AKT was found to be downregulated in a dose-de-
pendent manner in KET-treated cells. In a mouse xenograft model, KET caus-
es a reduction in relative tumour volume and tumour weight.
Conclusions: Our results suggest that ketamine has the ability to inhibit 
progression of gastric cancer via induction of apoptosis and attenuation of 
PI3K/Akt/mTOR.
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Introduction

The incidence of morbidity and mortality has made cancer a major 
threat to human life in both developed and resource-poor countries [1]. 
Despite excellent diagnostic and therapeutic options against cancer, 
a definite cure for this dreadful disease is still not available [2]. The ef-
fective management of cancer is greatly problematic due to multiple eti-
ologic factors, relapse and severe side-effects of anticancer agents [3]. 
In China, gastric cancer (GC) is the most widespread type of cancer af-
ter lung and liver cancer in men and after breast cancer in women. The 
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severity of disease could be easily understood by 
the fact that approximately half of the world’s GC 
cases and deaths occur in China [4–6]. The poor 
prognosis and diagnosis are the major hurdles for 
the treatment of GC, because the patients are of-
ten diagnosed at an advanced stage of disease. 
Regardless of advances of novel and efficient 
chemotherapeutic agents, the survival rate for pa-
tients is very poor and in the most advanced stage 
is less than 1 year [7]. Accumulating evidence sug-
gests that different signalling pathways are impli-
cated in the development of GC and induction of 
resistance against drugs [8]. Therefore, there is an 
urgent need to discover a novel agent which can 
selectively inhibit GC by attenuating the key sig-
nalling pathway involved in progression.

The genome-wide profiling of genetic aber-
rations from GC patients suggested the involve-
ment of phosphatidylinositol-3-kinase (PI3K)/Akt 
(protein kinase B)/mammalian (or mechanistic) 
target of rapamycin (mTOR) signalling pathway 
in anti-apoptosis and pro-survival. It manages cel-
lular transcription/translation, proliferation and 
survival of GC [9–12]. Therefore, inhibition of the 
PI3K/AKT/mTOR signalling pathway is deemed as 
a striking opportunity for the development of nov-
el anticancer agents and numerous agents have 
entered phase I, II or III clinical trials.

Ketamine (KET) is an intravenous anaesthetic, 
which acts in a  non-competitive way to antago-
nise the N-methyl-D-aspartate (NMDA) receptor, 
for the treatment of postoperative, chronic cancer 
pain and neuropathic pain, respectively [13, 14]. 
Accumulating evidence supports the anticancer 
activity of ketamine against various cancers, for 
instance, pancreatic cancer [15], lung adenocarci-
noma [16] and neuroblastoma [17]. Nevertheless, 
the effect of ketamine on GC remains unknown. 
Thus the current study was undertaken to exam-
ine the anti-gastric cancer potential of ketamine. 
The study also determined whether ketamine-in-
duced apoptosis is mediated via an effect on the 
PI3K/AKT/mTOR signalling pathway.

Material and methods

Reagents and materials

Ketamine was obtained from Sigma Aldrich 
(USA). The antibodies against Bax, Bcl-2, cleaved 
caspase-3, cytochrome c, PI3K, p-PI3K, Akt, p-Akt, 
mTOR and p-mTOR and β-actin were obtained 
from Santa Cruz Biotechnology (USA). The Trizol 
reagent kit was procured from Invitrogen (USA). 
The MTT assay kit was obtained from Sigma-Al-
drich (USA). All other primary antibodies, as well 
as anti-rabbit and anti-mouse secondary horse-
radish-peroxidase antibodies, were purchased 
from Abcam (USA) [18].

Cell culture

The human gastric cancer cell lines BGC-823, 
MKN-45 and MKN-28 were purchased from 
Shanghai Institutes for Biological Sciences, Chi-
nese Academy of Science (Shanghai, China). The 
cells were cultured in DMEM medium supplement-
ed with 10% FBS, 1% penicillin, and 1% strepto-
mycin in a humidified atmosphere of 95% air and  
5% CO2 at 37°C.

Cell viability assay

The cellular viability was evaluated by MTT 
assay. Briefly, the cells (BGC-823, MKN-45 and 
MKN-28) were seeded in 96-well plates and treat-
ed with KET for 48 h according to the manufac-
turer’s protocol. The absorbance was measured at  
490 nm test wavelength and 570 nm reference 
wavelength with an enzyme-linked immunosor-
bent assay multi-well spectrophotometer (MDC, 
Sunnyrale, CA).

Annexin V and propidium iodide (PI) 
staining

The effect of KET on apoptosis was evaluated 
by an annexin V/PI detection assay. Briefly, After 
48 h of KET treatment, the SGC-823 cells were 
analyzed by flow cytometry (FACScan, Becton 
Dickinson, USA) according to the manufacturer’s 
instructions (annexin V-FITC apoptosis kit, BD Bio-
sciences, USA). Data were further analyzed with 
the CellQuest software (Becton Dickinson). The 
experiments were performed in serum-free medi-
um in triplicate.

Fluorescent microscopy

The SGC-823 cells were washed with PBS and 
fixed in cold methanol and acetic acid (3 : 1, v/v) 
before being stained with Hoechst 33342 after 
treatment with KET for 48  h. The stained cells 
were visualized with a  fluorescence microscope 
(400×, Nikon, Japan).

Transwell migration assay 

The effect of KET on the migration of BGC-
823 cells was analysed using Transwell chambers 
with 8-mm porous membrane (Corning, Corning, 
NY, USA). For the migration of human gastric can-
cer cells (BGC-823) in monoculture, 1  ×  105 cells/
well were plated in the upper chambers of Tran-
swell plates with 8-μm pore polycarbonate mem-
brane inserts in a medium without fetal bovine 
serum (FBS). A medium with FBS was plated in 
the lower chambers. After treatment or no treat-
ment with dimethyl sulfoxide (DMSO) and with 
the indicated treatment for 16–24 h, the cells 
that had migrated to the bottom were fixed and 
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stained using 1% toluidine blue. The numbers of 
cells were averaged after six randomly selected 
fields were counted. Each sample was assayed 
in triplicate, and each experiment was repeated 
at least twice and the number of migratory cells 
was counted by fluorescence microscopy (magni-
fication, 100×).

Western blot analysis

The cells were washed with PBS and sus-
pended in extraction buffer to isolate the whole 
cell extract. Moreover, 50 μg of boiling sample 
buffer was added to the whole cell lysate and 
the mixture was boiled for 10 min at 100°C. The 
protein extract was separated by 12% SDS-PAGE 
and transferred onto PVDF membrane (Millipore, 
Billerica, MA, USA) and blocked for 1  h at room 
temperature in blocking buffer. The blocked pro-
tein was then probed with primary antibodies  
(1 : 1,000 in 1% BSA/TBS-T) overnight at 4°C, 
such as, p-AKT (Ser-473), p-mTOR (Ser-2448), 
p-GSK3β (Ser-9), and p-PI3K (Tyr-458). The mem-
branes were then washed twice for 15 min each 
in TBS-T and incubated with HRP-conjugated goat 
anti-mouse or -rabbit antibodies (1 : 10,000 in 
1% BSA/TBS-T). Cytosolic and mitochondrial frac-
tions were extracted by centrifugation, which re-
sulted in the supernatant (containing cytosol and 
microsomal fraction). It was precipitated in cold 
100% acetone at –20°C for at least 1 h followed by 
centrifugation at 12,000 g for 5 min and the pel-
let was then resuspended in 100–300 μl of STM 
buffer and labelled as the “cytosolic fraction”. The 
other pellet from the same supernatant was again 
resuspended in 100–200 μl of STM buffer and cen-
trifuged at 11,000 g for 10 min. Once centrifuged, 
the supernatant was discarded, the mitochondrial 
pellet was resuspended in 50–100 μl of SOL buffer 
(comprising: 50 mM Tris HCl pH 6.8, 1 mM EDTA, 
0.5% Triton-X-100, protease and phosphatase in-
hibitors) by sonication on ice at a high setting for 
5–10 s with 30-second pauses and labelled as the 
“mitochondrial fraction”.

Xenograft assay

The female nude mice (BALB/c nu/nu, age: 4– 
6 weeks) were obtained from the institutional 
animal house and kept in a  sterile environment 
in an alternate 12-h light and dark cycle at 24°C 
until the initiation of the experiment. The exper-
iment was carried out according to the Guide for 
the Care and Use of Laboratory Animals and was 
approved by the Animal Ethics Committee of the 
institute. For induction of tumour, SGC-823 cells 
(1 × 105 cells/mouse) were administered into the 
right flank of each mouse. After reaching the op-
timal tumour size (110–130 mm3) after 10 days, 

the nude mice were randomly divided into three 
groups (n = 5): 
– Control: Normal saline,
– Second group: KET (5 mg/kg),
– Third group: KET (10 mg/kg).

The mentioned concentration of KET was in-
jected into mice intraperitoneally (once a day for  
3 weeks). Tumour length and width were mea-
sured using a caliper and the tumour volume was 
calculated using the following formula: tumour 
volume = length × width × 0.5 width.

Results

Growth inhibitory effect of KET on  
BGC-823, MKN-45 and MKN-28 gastric 
cancer cell lines

The initial part of the study was performed 
to determine the effect of KET in diverse con-
centrations on the viability of MKN-45, MKN-28 
and BGC-823 gastric cancer cell lines. We used 
three different concentrations of KET, i.e., 2, 5 and  
10 μg/ml, and the results are summarized in Fig-
ure 1. Our results suggest that KET showed a de-
crease in viability of cells in a concentration- and 
time-dependent manner. The KET showed a more 
pronounced effect on BGC-823 (Figure 1 C) than 
MKN-45 (Figure 1 A) and MKN-28 (Figure 1 B) 
cells. Particularly against BGC-823, KET showed 
59% inhibition at the highest test dose of 10 μg/
ml in 24 h and as the time increased to 72 h, it 
showed 93% inhibition. The same concentration 
showed 38% and 48% inhibition of MKN-45 and 
MKN-28 cells at 24 h, respectively.

Ketamine induces apoptosis in BGC-823 
cells

Encouraged by the excellent inhibitory activity 
of KET against BGC-823, we intended to investi-
gate the detailed mechanism behind the antican-
cer activity of KET. Thus, in the next part we are in-
terested to know whether the observed inhibitory 
effect of KET on BGC-823 cells was linked with the 
induction of apoptosis. We performed flow cytom-
etry analysis of annexin V and propidium iodide 
(PI) staining to assess the percentage of apoptotic 
cells after 24 h treatment of KET in BGC-823 cells, 
and the results are presented in Figures 2 A and B.  
The results showed that KET caused a  dose-de-
pendent increase in late apoptotic cells in the 
treated group. The most prominent activity was 
reported in the case of the 10 μg/ml treated group. 
Fluorescence microscopy was also conducted on 
cells after treatment with KET, and the results are 
presented in Figure 2 C. It was found that chroma-
tin was condensed together with fragmentation of 
nuclear material and presence of apoptotic bodies 
in treated cells. The above observation confirmed 
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that KET causes significant induction of apopto-
sis as evidenced by characteristic morphological 
changes in treated BGC-823 cells in a concentra-
tion-dependant manner.

Migration of BGC-823 cells inhibited by KET

This study was conducted to assess the effect 
KET on the migration of BGC-823 cells after 24 h 
of treatment. The results showed that KET causes 
a significant dose-dependent decline in migration 
of treated cell, Figures 3 A and B. More significant 
inhibition was observed in the case of the 10 μg/ml  
treated group.

Effect of KET on apoptosis-associated 
proteins in BGC-823 cells

The level of apoptosis-related proteins was 
evaluated in BGC-823 cells after treatment with 
KET by western blot analysis. As shown in Figure 4, 
the level of Bcl2 was significantly downregulated 
in the KET treated group with significant upregula-
tion of Bax expression in a dose-dependent man-
ner. The activity of caspase-3 was also enhanced 
after treatment with KET, Figure 4 D. The next part 
of the study aimed to assess the effect of KET on 
the release of cytochrome c; thus we evaluated the 
expression of cytosolic and mitochondrial cyto-

chrome c. As presented in blot analysis (Figure 4 A)  
and representative histograms (Figures 4 E–G), 
the expression of mitochondrial cytochrome c de-
creased with the increase in cytosolic cytochrome c  
together with the increase in cytosolic apoptotic 
protease activating factor-1 (Apaf-1). These re-
sults suggest the involvement of the mitochondri-
al pathway in KET-induced apoptosis.

KET targets PI3K/AKT/mTOR pathway

Inhibition of the PI3K/AKT/mTOR signalling 
cascade is an attractive target for the treatment of 
gastric cancer. Thus, this part of the study aimed 
to determine the effect of KET on expression of 
the proteins involved in this pathway. As pre-
sented in Figure 5, the results demonstrated that 
KET-treated cells cause downregulation of p-PI3K, 
p-mTOR, p-GSK3β and p-AKT in a dose-dependent 
manner.

Effect of KET xenograft assay

Encouraged by the excellent in-vitro activity 
of KET in gastric cancer cells, we next evaluated 
the inhibitory potential of KET in an in-vivo mouse 
SGC-823 xenograft model. As presented in Fig- 
ure 6, it was found that KET showed a reduction in 
the relative tumour volume with the most signif-

Figure 1. Effect of KET on cell viability assay, were: 
BGC-823 (A), MKN-45 and MKN-28 (B) and BGC-
823 (C)

Results represent means ± SD of three independent 
experiments. **P < 0.01; ***p < 0.001 vs. control group.
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icant activity in the 10 mg/kg dose as compared 
to the control. Moreover, the 5 mg/kg dose also 
showed a  significant reduction in the tumour 
weight, as compared to the control. These obser-
vations confirmed that KET exerts a  significant 
anticancer effect.

Discussion

The high incidence of mortality and morbid-
ity has made gastric cancer a  great threat to 
mankind. The high complexity of the underlying 
mechanism behind its progression has creat-
ed selective pressure for the discovery of new 
agents which can inhibit the growth of GC via 
numerous pathways [19–24]. Cancer-related 
pain is a  significant challenge for the therapeu-
tic management and it is difficult to control with 
opioid-based analgesics alone [25, 26]. Ketamine 
is pharmacologically classified as an anaesthet-
ic exhibiting a  significant analgesic property at 
a low dose via antagonising the NMDA (N-meth-
yl-D-aspartate) receptor [27, 28]. As a  result, it 
is widely used as an adjuvant to opioid therapy 
for the treatment of cancer-related pain when 
the pain becomes opioid-resistant. Ketamine, 
an anaesthetic, analgesic, or sedative, is widely 
used for the treatment of cancer pain as well as 
for numerous cancer subtypes [29, 30]. However, 
no study has elucidated the protective role of ket-
amine against gastric cancer; thus, in the present 
study, we tried to determine whether ketamine 
has any benefit against GC and to elucidate the 
potential underlying molecular mechanism [31]. 

In the present study, KET showed reduction of the 
viability of tested GC cells, viz., BGC-823, MKN-
45 and MKN-28. Among the tested GC cells, KET 
showed the most significant inhibitory activity 
against SGC-823. Thus, it is imperative to under-
stand the mechanism behind this effect; we have 
evaluated the effect of KET on the apoptosis of 
SGC-823 cells. Apoptosis is the well-organized 
and coordinated process of cell death that hap-
pens in physiological and pathological conditions. 
Accumulating evidence suggests that a defect in 
apoptotic pathways is involved in a  number of 
diseases, ranging from neuro-degeneration to 
malignancy [32–34]. In the present study, KET 
was shown to induce apoptosis of SGC-823 cells 
in a  concentration-dependent manner. It caus-
es induction of early and late apoptotic cells as 
observed by change in morphological character-
istics. The occurrence of metastasis is the chief 
concern for patients with cancer where the malig-
nant cells migrated from the primary site to sec-
ondary organs [35, 36]. Thus, in the present study 
KET showed significant inhibition of migration of 
cells in a  concentration-dependent manner, and 
almost complete inhibition of cells was observed 
in the 10  μg/ml treated group. Studies suggest 
that cell cycle division is the vital step in the pro-
gression of cancer. Thus, novel inhibitors are able 
to block the cell cycle cascade in order to prevent 
the proliferation of cancerous cells [37–40]. Our 
results indicated that KET causes significant in-
hibition of the cell cycle at the G2/M phase; thus 
it prevents cells from entering mitosis when DNA 
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Figure 4. Expression level of apoptosis-related proteins in BGC-823 cells after exposed to KET. A – Western blot 
analysis of Bax, Bcl-2, caspase-3, cytosolic cytochrome c, mitochondrial cytochrome c, cytosolic Apaf-1 expressions 
in BGC-823 cells. Quantitative analysis of Bcl-2 (B), Bax (C), caspase-3 (D), cytosolic cytochrome c (E), mitochondrial 
cytochrome c (F), cytosolic Apaf-1 (G)

Results represent means ± SD of three independent experiments. **P < 0.01 vs. control group.
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is altered, providing an occasion for restoring and 
attenuating the propagation of damaged cells. 
The dysregulation of Bcl-2 family proteins is the 
characteristic feature of gastric cancer. Thus, clas-
sical and recent anticancer agents directly check 
Bcl2 regulated events at the level of mitochondria 
[41]. Our results suggest that KET causes the in-
duction of pro-apoptotic proteins such as Bax and 
reduction of anti-apoptotic proteins such as Bcl-2,  
as identified by western blot analysis. Studies 
confirmed that GC has reduced caspase-3 activity 
and is responsible for the delay in apoptosis [42]. 
Thus our results indicated that KET cause induc-
tion of caspase-3 activity which might result in 

induction of apoptosis for dismantling the cellular 
structure and its inhibitory activity against gastric 
cancer. The induction of bax and caspase-3 activi-
ty causes loss of mitochondrial membrane poten-
tial, causing the release of cytochrome c from the 
mitochondria. This released cytochrome c then 
binds with Apaf-1 and induces apoptosis [43–45].  
Our results suggest that the inhibitory activity of 
KET against GC possibly occurs by induction of 
cytosolic cytochrome c and Apaf-1 together with 
a decrease in mitochondrial cytochrome c as ev-
idenced by western blot analysis. These results 
indicated that KET causes induction of pro-apop-
totic proteins vital for inhibition of GC.
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Various studies have confirmed the role of 
PI3K/Akt/mTOR pathways in the progression of 
gastric cancer. It causes regulation of numerous 
cellular events, such as of proliferation, mortali-
ty, survival and angiogenesis [46]. This pathway 
is often found aberrantly activated in gastric can-
cers [47–49]. Consequently, numerous targeted 
therapies against this pathway are being tested 
in clinical trials. Nevertheless, with the exclusion 
of the ErbB2-targeting antibody, selective agents 
aiming at PI3K/Akt/mTOR have still not been ap-
plied in clinical practice for treatment of gastric 
carcinoma [50, 51]. The results of our study indi-
cated that KET causes significant down-regulation 
of PI3K-AKT-mTOR, which might be recommended 
as a mechanism for the anticancer effect in gastric 
cancer. In order to confirm the in vivo activity of 
KET against GC, we performed the xenograft as-
say in Balb/c mice [52]. 

In conclusion, as a  concluding remark, the  
in vitro activity of KET was replicated in an in vivo 
experiment also. It was found that KET caused sig-
nificant inhibition of tumour growth as evidenced 
by the reduction of tumour volume and tumour 
weight in a  mouse SGC-823 xenograft model. 
Our data emphasize that the anti-gastric cancer 
activity of ketamine was due to the induction of 
apoptosis and attenuation of the PI3K/Akt/mTOR 
pathway. Further investigations focusing on ket-
amine as a potential agent against gastric cancer 
are warranted.
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